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A METHOD OF DYNAMIC  PROGFLAMMING AND ITS  APPLICATION 
TO  OPTIMIZATION  PROBLEMS OF FLIGHT  MECHANICS 

Discussion  of  Bellman's  method  of programing and  its  appli- 
cability  to  the  numerical  solution of optimization  proDlems 
of  flight  mechanics,  The  applicability  of  the  method is il- 
lustrated  on  two  practical  examples - i.e., optimization of 
the  payload  ratio of a multistage  rocket  and  determination 
of  brachistochronic  flight  paths.  Some  results of computer 
calculations  are  discussed, 

The  method  of  dynamic  programming,  based  on  the  optimization  principle  es- 
tablished by R.Bellman, is suitable  for  the  treatment  of  optimization  problems 
in which - for  example,  due  to  the  existence  of  secondary  conditions in the 
form of inequalities - the  prerequisites f o r  solution  with  the  classical in- 
direct  methccl  of  the  calculus  of  variations  are  not  met.  On  hand of  examples of 
optimization of a multistage  rocket  and  determination  of  brachistochronic  flight 
paths,  practical  application of the  method of dynamic  prograrmning is described. 
Practical  experience  with  the  computational  procedure  and  problems  of  accuracy 
are  discussed in some  detail. 
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1. Introduction 

The  purpose of this  paper,  discussing  the  method of dynamic  programming  and 
its  application to optimization  problems in flight  mechanics,  is  not so much to 
report  novel  flight-mechanics  data  but  rather  to  give a general  survey  over  the 
applicability  of a method  which  had  been  developed  specifically  for  the  numeri- 

* German  Aeronautics  and  Space  Research  Organization,  Institute  for  Flight 
Mechanics,  Braunschweig. 

::-+e Numbers  given in the margin indicate  pagination in the  original  foreign text,, 
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cal   solut ion of optimization problems. T h i s  method, which carries the  name of 
"dynamic  programming" was developed  by  the American mathematician  Richard  Bell- 
man who was involved i n  this program ever  since  the  beginning  of  the Fifties 
and applied it, together  with coworkers at the  Rand Corp., t o  numerous problems 
in widely  differing  f ields of industrial   research,  national economics, and 
general  engineering. The data  obtained in these  investigations were published 
not  only i n  a large number of individual  papers  but  also i n  two,books. The book 
by Bellman "Dynamic Programing"  published i n  1957 (Ref. 1 ) contains  the  theo- 
re t ical   pr inciples;   for   var ious  types of optimization problems, the  formulation 
is  given a s  a dynamic programing problem with a description  of  the method of 
solution.  Since  the method i s  intended  primarily  for  handling  optimization 
problems by  numerical  treatment  with  the  use of a d i g i t a l  computer, the book 
!'Applied  Dynamic  Programming" published  by Bellman i n  cooperation  with  Dreyfus 
(Ref.2) i s  mainly  concerned  with  computational  viewpoints  under  treatment  of 
pract ical  examples, constantly emphasizing the  limits s t i l l  frequently encoun- 
tered  in  practical   execution  of  the computations. An excellent  survey  over  the 
method i s  contained i n  an a r t i c l e  by  Dreyfus, in   the  Col lect ive Works "Progress 
i n  Operations Research" published  by R.L.Ackoff (Ref.3 ). The  method of dynamic 
programming presupposes tha t   t he  problem t o  be  solved  can  be  brought t o  the 
form of  a multistage  decision  process.  Therefore, we w i l l  first discuss  the 
necessary  conceptual  aspects and then  formulate  the  so-called  optimlity  prin- 
ciple  by Bellman,  which  forms the  basis  f o r  practical  application  of  the method. 

The f i e l d s  in which the method of dynamic programing can be  applied in- 
clude  also  optimization problems  of rocket  technology and problems in f l ight-  
path  optimization. Two simple examples  of this type  will  be used for  explaining 
the method i n  some de ta i l .  

The problem of selecting  the masses f o r  the  stages of a multistage t4-L 
rocket, which i s  t o  reach a prescribed  burnout  velocity, i n  such  a manner tha.t 
the l i f t o f f  mass of the  rocket will remain as small as possible, was specifi- 
cal ly   t reated by Ten  Dyke (Ref .,!+) under  application  of  the method of dynamic 
programring  [see  also  others (Ref.1, p.145, Problem 55; Ref.2, pp.227-228). 

Problems of  flight-path  optimization such as the  determination  of  the op- 
timal -climb technique  of a given  a i rcraf t  and of   opt imal   satel l i te   t ra jector ies  
were treated  in  several   papers  by Bellman and coworkers  (Ref.5, 6, 7). In addi- I 
t ion,  Bellman published a summary report on the  determination of  optimal tra- 
jector ies  via dynamic programaning, i n  the book by G.Leitmann "Optimization 
Techniques with  Application t o  Aerospace  Systems"  (Ref.8). Several  papers in 
this f i e l d  have also been  published in Germany within  the  past two years.  In a 
Darmstadt thesis ,  J.Spintzyk (Ref . 9 )  investigated  optimal  time-to-turn and 
overtake maneuvers of supersonic  aircraft,  under  application of the method of  
dynamic programming; H.Friede1 and K.Stopfkxchen a t  the  Dornier Go. (Ref.10) 
applied  the method t o  calculating time-optimal t r ans i t i on   f l i gh t s  of VTOL air- 
craft .  

In the   l as t   por t ion  of  the  paper, we wil l   report  on computational  experi- 
ence  gained on the Siemens 2002 d i g i t a l  computer of the D F L  i n  Braunschweig. To 
define  the  basic problems, we selected  simple examples that   are   not  burdened 
with  the  extensive  computational  apparatus  inherent  to  flight-mechanics problems 
but   are   of   interest  mainly from the  mathematical  viewpoint. 
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2. Basic Concepts: Principle  of OptMity 

The  method of dynamic programning i s  used for  determining  the  optimal pro- 
cedure i n  multistage  decision  processes. In a more general  formulation, this 
means: A system is t o  be  transferred from  an initial state, over a number of 

, steps,   into a final s t a t e  i n  such a manner that this t ransfer  i s  optimal i n  a 
sense to  be  defined more accurately i n  each  individual  case. The initial state 
i s  conceived as represented  by a poin t   in  a p l ane   (po in t   f a r thes t   t o   t he   l e f t   i n  
Fig.1).  Let  us now assume a number of possibi l i t ies   for   reaching new states 
from the  initial point. The t rans i t ion  from t h e   i n i t i a l   s t a t e   t o  a new state 
requires a "decision". The t o t a l i t y  of   the  s ta tes   that  can be reached  from ,& 
t h e   i n i t i a l   s t a t e  via the  possible  decisions  represents  the first stage of the 
process. From each  of t he   s t a t e s   i n   t he  first stage,   the  states of the second 
stage  are reached  by a possible  decision, and so on. After N steps,   the sought 
f ina l   s tage  should  be  reached.  This r e s u l t s   i n  a plot t ing of the  type shown i n  
Fig.1. 

A sequence of decisions,  leading from t h e   i n i t i a l  t o  t he   f i na l   s t a t e ,  i s  
known a s  a  "plan". O f  all possible  plans,  that  type i s  sought which will have 
a desired optimum property. T h i s  i s  then  called  the  "optimal plan". 

A t  the  head of his considerations, Bellman placed  the  following  principle: 

E&eUm@nts Optimality  Principle 

An optimal  plan  for  the  decisions  has  the  property  that,  independent of the 
type of i n i t i a l   dec i s ion  and of the  type  of  state  present,  the  remaining  deci- 
sions  again form an  optimal  plan  with  respect t o  the  state  obtained from the  
first decision. 

This  principle can be more or l e s s  considered  an axiom since it seems 
reasonably  inconceivable  that it should  not  be  valid. For example, i f  one 
imagines, i n  a given problem i n  which the  expenditure  (expenditure of time or 
cost)  i s  t o   b e  reduced t o  a minimum, the  corresponding  expenditure as  being de- 
termined f o r  each  decision,  then  the  expenditure from any intermediate  state  to 
t h e   f i n a l - s t a t e  must not  be  greater  for  the  optimal  plan  than  for any other  plan 
which leads from the  intermediate state t o   t h e   f i n a l  state. 

This  principle  corresponds  exactly to  the  property  of  the  brachistochrone 
which had furnished  the  incentive  for development  of the  calculus  of  variations 
by  the  brothers  Bernoulli. The brachistochrone has the  property of represent- 
ing  the  t ra jectory between  an init ial  point A and an end point E i n  a ve r t i ca l  
plane on which a cer ta in  mass point,  under  the  effect  of  gravity,  travels from 
A t o  E i n  a shorter time than by  any other  path.  In  addition,  the  brachisto- ,& 
chrone  has the  property,  for  each  intermediate  point,  that it represents  the 
curve of steepest  descent from there   to   the  end point E. 

In  Fig.1,  only a s i n g l e   i n i t i a l  and a single end s t a t e   a r e  assumed. There 
i s  no objection t o  permit  an  arbitrary number of states for  the  zero  stage and 
fo r   t he  N-th stage. In the  language  of the  calculus of variations,  one then  has 
no longer   to  do with  point-point problems but   wi th   in i t ia l  boundary-point, 
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point-final boundary, o r  initial boundary-final  boundary problems. 

It might  happen tha t ,  from some s t a t e  of one stage,  the  decision  possi- 
b i l i t i e s  t o  a l l  s t a t e s  of the  next  stage are available. However, a lso  the  other  
extreme is  conceivable, namely tha t ,   s t a r t i ng  from each s ta te ,  one  can  choose 
only between two decisions o r  has  only a single  possibility  of  reaching a s t a t e  
of the  next  stage. 

The point of  importance f o r  computational  application i s  the   f ac t   t ha t   t he  
process  under  consideration  consists of a f i n i t e  number of stages and tha t ,  in 
each  case,  only a f i n i t e  nwnber of s t a t e s  i s  present.  Therefore,  the method i s  
intended  for problems i n  which the  var iables  assume on ly  discrete  values, 

However, the method is  also  directly  applicable  to  continuous problems i f  
these are discretized. Such a procedure i s  nothing  unusual i n  mathematics. We 
merely need r eca l l   t he  methods f o r  numerical  solution of differential   equations 
i n  which these  are  replaced  by  difference  equations, Problems raised  in   the 
t rans i t ion  from continuous  variables  to  discrete  values,  including  questions of 
accuracy,  etc., will be  discussed later. This  transition  permits  treatment of 
problems of  the  calculus  of  variations, which naturally  include  flight-path op- 
timizations,  using  the method of dynamic programming. 

3.  optimization^  of^ Payload. &ties i n a  Multistage- . .  R+k& 

A s  a typical  example for  the  practical   application of the method of dynamic 
programing, let  us  analyze  an  optimization problem from rocket  technology. ,&' 
Let  us  consider an N-stage rocket.  Figure 2 contains  the  notations  for  the 
masses of the  stages and of the  entire  rocket on igni t ion and  on burnout of the 
individual  stages. Here, M i s  the mass of one stage and m i s  the mass of the 
t o t a l  rocket. The superscript   gives  the number of the  stage  while  the  subscript 
0 indicates   the  instant  of ignit ion of  a given  stage,  with  the  subscript bo de- 
noting  the  instant  of  burnout. 

The payload of the  k-th stage  consti tutes  the remainder  of the  rocket  car- 

r ied  by this  particular  stage,   i .e. ,  mo . The actual  payload mass can thus 
be  denoted  by m, . The quotient 

( k+l) 

( N i - 1 )  

i s  called  the  "payload  ratio" of the  k-th  stage. The product of a l l  payload 
ratios y ie lds   the   ra t io  of the  actual  payload GN+l)  t o   t h e  l i f t o f f  mass mo : (1) 

The "structure  factor" of the k-th  stage i s  the ratio of i t s  mass on burnout 
and on ignition: 
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Since 

i s  valid,  we can a l so  write 

Let us next  consider  the  f l ight  of an N-stage rocket in drag-free and gravity- 
f r ee  space. A s  soon as one stage  has  burnt out, it separates from the   r e s t  of 
the  rocket a t   t h e   i n s t a n t  of  burnout.  Simultaneously,  the  next  stage i s  ig- 
ni ted so that  the  values f o r  the  time and velocity on igni t ion of a  given /8 
stage  coincide  with  the  burnout  values f o r  the  time and velocity of the preced- 
ing  stage: 

Let  the  exhaust  velocity of the combustion gases,  for  the k-th stage, have the 
value c' k, . 

The question  here is:  If the  s t ructure   factors  e ' l )  , eC2)  , ..., and 
the  exhaust  velocities c") , cC2) 9 * * e 9  c ' ~ )  as   wel l  as the ratio of payload t o  
l i f t o f f  mass 

are  given, how does the  payload ratio Tfl) , 'ff 9 * * * Y  Tl' N ,  have t o  be  selected 
t o  have the  burnout  rate of the   l as t   s tage  become a maximum? 

Using the fundamental  equation of  rocket  technique,  the  velocity  increment 
from igni t ion t o  burnout can be  calculated  for  each  stage;  by summation, t he  
v e l o c i t y   a t  burnout of  the N-th stage will then  be  obtained  as 

with 

Accordingly, one has t o   d e f i n e   a t  what selection of 7'') , 'If2) , . . . , T I c N )  the  
function 
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becomes a miudmum, in which case  the  auxiliary  condition exists tha t  - accord- 
ing t o  eqs.(3.2) and (3.7) - the  product  of  the payload factors  has  the  pre- 
scribed  value a*: 

( I )  f2)  (Nl - * 7iI ?Z ...q - a  . (3.11) 

The sought maximwn i s  a function of N and a*: 

i n  which case  the  variables 1‘ k, are located  in   the  interval  

Ln. 

(3.12) 

and are subject  to  the  auxiliary  condition (3.11). 

Instead of the  special  given  value a*, l e t   u s  now consider, in a general 
manner, the  function FN (a)   for   an  arbi t rary a which, j u s t   a s  a*, i s  subject  to 
the  condition 

For F N ( ~ )  a recursive f o d a  i s  t o  be  established. For N = 1, we have 

Then, seeking f o r  the maximum (3.12) i s  conceived as an N-stage decision pro- 
cess.  Let  us  imagine  the first N-1 decisions as already  being  taken, so tha t  
t he   l a s t   s t ep  must be made. For the  first N-1 variables 7‘ k, the  following i s  
val id  : 

From t h e   i n i t i a l  state t o  t h e   s t a t e   a f t e r  N-1 decisions, an optimal  path had t o  
be used i n  which case  the  relation (3.16 ) as auxiliary  condition had t o  be /10 
sat isf ied.  The solution f o r  this   reads FN--1 (a/IfN)). To t h i s  must be added, a s  
the   f ina l   s tep ,   the  summand LCN) (ICN)), from which it follows tha t  

In  general,  the  following i s  valid f o r  each k = 2, ..., N: 
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Under consideration  of  eq.(3.15),  the formula (3.18) offers  a possibil i ty  of  re- 
cursively  calculating  the  values Fk ( a )  f o r  k = 1, 2, .. . , N. By means of  the 
functional  equation (3.18 ), the  problem has  been made accessible  to  handling on 
a d i g i t a l  computer. The fact   that ,   in   this   case,  a number of  problems may occur 
i n  the  pract ical   solut ion will be  further  discussed  in  Section 5. 

According t o  eq.(3.18), the  maximum of  the  function 

must be  sought i n   t he   i n t e rva l  a 5 7 < 1. Since, in  the  case  under  considera- 
t ion,  L C K )  ( 7 )  because  of  eq.(3.9) i s  known in  analyt ic  form, the maximum can 
be  obtained from the  condition cp‘(7)) = 0 provided that  the  solution  obtained 
from this  condition is  located  in  the  prescribed  interval.  However, t h i s  need 
not  necessarily  be  the  case. Then, the  function (3.19 ) assumes i t s  maximum 
value  along  the  boundaly  of  the intervals which means that., a t  given  values for 
the  exhaust  velocities and the  s t ructure   factors ,  max5m.m burnout  velocity i s  
reached with a rocket of less   than N stages. 

In contrast   to   the problem discussed  here,  the maximum can generally  not /11 
be  determined  by  analytical means and, possibly, may require  extensive  numerical 
calculations on a d i g i t a l  computer. We wi l l   re turn   to   th i s   par t icu lar  problem 
in  Section 5. 

4. O p t i m u m  C l i m b  of an  Aircraft 

A given a i r c r a f t ,   f l y i n g   a t  a  speed Vo a t  an  a l t i tude hb , i s  t o  be  brought, 
in a climb, t o  an  alt i tude  he > ho and t o  a speed  of V, > Vo in the   shortest  
possible time. The thrus t  S and the aerodynamic drag W Kust  depend only on the  
a l t i t ude  h and the speed V and must be known functions  of  these  variables. The 
va r i a t ion   i n  aerodynamic drag  with  the  angle of  a t tack and the  influence of 
weight  reduction due t o  fuel consumption w i l l  be  disregarded  here. For the  path 
inclination  angle y,  the  values 0 5 y ya ax I; 90’ w i l l  be  admitted. The goal 
is  to   es tab l i sh   the   op t imal  climb  program and t o  calculate  the  required  time  of 
f l ight .  

Here, the  following  equations of  motion are   val id:  

m V =  s - w - r n y s i n r ,  

with  the boundarg conditions a t  the  time t = 0 
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and, a t  t he  unknown time t,, 

and, in addition, it i s  assumed t h a t  

t ,  = Min. 

To obtain  the  functional  equation,  permitting  an  application of the  /12 
method of dynamic  programming, we will decompose the  veloci ty   interval  from VO 
t o  V, i n to   pa r t i a l   i n t e rva l s  of a s i ze  AV and the   a l t i t ude  range from ho t o  he 
in to  subsegments  of a s i ze  Ah. From the  different ia l   equat ions (4.1) and (4 .2 ) ,  
the   re la t ions between AV, Ah and the time interval A t  are obtained: 

b V =  ( - g sind 1 A t  5 - w  
m 

A h  = Vsin J A t  

'AV  =( s - w  - + ) A h .  
rn V s i n r  

(4.7) 

A s  independent variable,   the  alt i tude  increment Ah can be  selected  for a 
path segment with y > 0 while,  for a horizontal segment along which the  speed  of 
t he   a i r c ra f t  i s  increased,  the  velocity increment AV can be used. Path seg- 
ments a t  constant  altitude and constant speed are of no interest f o r  our con- 
sideration.  In  addition, no bas i c   d i f f i cu l t i e s  are produced by  admitting  also 
path segments with  dives a t  which the  angle of incl inat ion becomes negative and 
the  speed i s  increased  under loss of a l t i tude.  

L e t  the  minimum time required  by  the  a i rcraf t   to   pass  from the  state h, V 
t o   t h e   f i n a l  state he, V, be f ( H ,  V). 

The time  required for climbing from the  state h, V under  the  angle y by an 
amount Ah, i s  denoted  by t (h ,  V,  y ,  Ah) respectively  by  t(h, V, y ,  AV), depend- 
ing on whether Ah or AV const i tutes   the independent  variable. 

On the   bas i s  of  Bellman*s  optimality  principle,  the  equation 

f ( h , V )  = Min [ ~ ( h , V , ~ , A h ) + f ( h + ~ , V + O V ) ]  
o~r%mar (4.9 1 

respectively 
f (h,V) = Min [ t ( h l  V, J-, DV) t f ( h  +Oh,V t A V ) ]  

o v r , , r  (4.10) 
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i s  obtained. Here, the  second sumnand on the  right-hand s ides   represents   the /13 
minimum time  required  for  passing from the  state h + Ah, V + hV t o   t h e   f i n a l  
state hi ,  V,. I n  eq.(4.9), AV - in accordance  with eq.(4.8) - must be  expressed 
by Ah while, i n  eq. (b.lO), Ah must be  expressed  by AV. 

For t he  first summand  on the  right-hand s ide  of  eq.(4.9), we have 

and, in the  case of eq.  (4.101, accordingly 

Equations  (4.9) and (4.10) represent  the  recursive  formdas  for  application of 
the  method of dynamic  programming. After assuming a f ixed  value  for  Ah resp. AV 
one starts wi th   the   f ina l  s ta te  he, V, , f o r  which 

For the  values  he,  V, t he   t h rus t  and drag are calculated, which are then  taken 
as constant  for  the  next  step.  After this, a sequence of values Y1, YZ, ... , Yi 
are selected  for   the  path  incl inat ion  angle  y, calculat ing  the right-hand s ides  
of  eq. (4.9) resp.  (4.10) f o r   t h i s  sequence and thus  obtaining  the  times tl, 

(4.7),  the  corresponding  velocity  resp.  altitude i s  obtained i n  each  case. De- 
termination  of  the minimum of the  calculated  values will then  furnish  the  value 
f (h ,  V). I n   t h i s   w n n e r ,  it i s  possible   to   pass  from  each state of a given 
s t age   t o   t he  states of t he  preceding  stage. 

t 2 r  . . . , t for   the  i states of the   (n  - 1)-th  stage. From eqs. (4 .6)  resp. 

The  method of dynamic  programming, because  of t he  enormous computational 
e f for t ,  can generally  not  be  applied  without  the  use of e lectronic  computers. 
Consequently, t he  above statements will be supplemented  from the  computational 
viewpoint, in which case we will rest r ic t   our   discussion of t he  examples t o   t h e  
previously  treated problem  of the  payload ra t io   o f  a multistage  rocket as well 
as t o  a f e w  problems of the  calculus of variations.  On hand of these ex- & 
amples, the  computational  handling of the  dynamic programning and the   d i f f i -  
cu l t i e s  and  problems occurring in t h i s   p a r t i c u l a r  computational method w i l l  be 
demonstrated. 

a ) F i r s t  Example  

The  method of dynamic programning  can be  explained on the  following ex- 
ample : 

9 
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The function 

k-f 

dependent on the N + 1 variables y'"' , y'" , .. . , y( N, with  the boundary  condi- 
t ions 

i s  t o  be minimized by  suitable  choice of t e  variables y' k ,  (k = 1, . . . , N - 1). 
Here, we make the   r e s t r i c t ion   t ha t   t he  Y ' ~ '  variables can a s m e  only  certain 
discrete  values yf k ,  . 

The calculation can  proceed  stepwise a s  a31 N-stage process. We have 

The graphic  representation of  an  optimization  plan  (Fig.3 ) indicates  the calcu- 
la t ion  procedure. The calculation,  according t o  eqs.(5.3) and (5.4), consists 
of two parts. 

a )  Calculation of t h e   i n i t i a l  column: For each y:') of the first stage, 
the  corresponding  value Fl (yi ) i s  calculated  according t o  eq. (5.3 ) 
and then  stored. 

b ) Extremization  sequence  (considering  only  the  k-th  stage): For each 
yi of the  k-th  stage, i n  accordance  with eq. (5.4), t ha t  yi '"l) of 
the  (k - 1)-th  stage i s  sought which minimizes the  contents of the 
brace   in  eq. (5.4). The obtained  value y: k"l )  and the  function  value 
Fk (yi ) are s tored  in   the memory. 

If the  extremization sequence i s  continued t o  the N-th stage,  exactly /lr 
one l i n e  segment will be  obtained  for each s t a t e  y:N)  of the N-th stage,  rela- 
t i v e  t o  the  prescr ibed  f inal   s ta te  y'"' = yQ. 

Thus, extremization of the N-th stage  has  yielded a r e su l t  going beyond the 
required problem formulation,  Le.,  without  excessive  additional  computational 
effor t   a   special  boundary-point  problem  has  been  solved instead of a point-point 
problem. I n  numerous practical   cases,  such  a  supplementary e f for t  is well 
worth it. 
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b ) Kem0.q Requirement  and^ Computation Time 

In  calculating  the yt iT1) of the  (k - 1)-th  stage and the Fk (yi ) of the  

k-th  stage, i n  accordance  with eq.(5.4) only  the ( y ~  ) of the (k - 1)-th 
stage  but not the  function  values of the  preceding  stages were required. 

On denoting  the maximum number of  possible  states  per  stage by  h, it i s  
suff ic ient   to   reserve 2h  memory reg is te rs  f o r  the  functional  values. 

If exactly  h states are  permitted i n  each  stage,  the  following will apply 
f o r  the  simple example treated  here: 

Number of memory locations for data = (N+l)h; 

Calculating  time,  approximately  proportional t o  (N-l)h2 + h. 

If such  a problem  depends not  only on one but on n  variables which a l l  can  as- 
sume h s t a t e s   i n  each  stage,  then  the  following  rule of thumb applies: 

Number of memory locations f o r  data  = (N+l)hn, 

Calculating  time,  approximately  proportional t o  (N-l)h2" + hn. 

The diff icul- t ies   ar is ing from these rules of thumb will be  discussed  later 
in   the   t ex t .  

c ) Second  Example 

The programing  technology of a  given problem,  by means of dynamic  program- 
ming, will be  explained on the example of  calculating  the payload ra t ios  f o r  ob- 
taining  as  high  as  possible  a  burnout  velocity  in  an N-stage rocket. /16 

According to  the  statements  in  Section 3 ,  this  optimization problem 

can  be  written  in  the form of  an N-stage process 

F; (a) = P ( a )  , 

and thus  solved  by means of dynamic programning. 
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I n  each stage  of  the  optimization  process,  only a limited nunber of s t a t e s  
can  be  permitted,  i.e. , a, 7, and an can assume only a limited number of dis-  
crete  values. 

Introducing  the  variation  interval 6 and selecting 6 i n  such  a manner tha t  
the  expressions 1/6 = h and ( i f  a t  a l l  possible)  also a*/6 are  integers,  we w i l l  
assume tha t  a and 7, from here on, can take  only  the  values i 6  with i = 1, 
2, . . , , h. In   the problem under  discussion, it i s  preferable  to  select  6 i n  
the  order of  magnitude 0.002 - 0.01. 

I f  a = i 6  and y = j 6 ,  the  above quotient  afl = i / j  will   generally  be a 
multiple of 6.  For this reason, it i s  preferable  to  select   the  value  closest  
t o  a n  from the  permissible  data  reserve,  using  the  formula 

where integer x denotes  the maximum whole number smaller  than o r  equal t o  x. /17 
This  completely discret izes   the problem. In  addition,  the  three  variables 
(stage,   state,   decision) occur as  subscripts (k, i, j )  and thus  permit a con- 
venient  computational  data  processing. 

If one uses  the  following  expression, i n  analogy t o  the  conventional  index- 
ing of matrices  with  the  use of the ALGOL notation: 

and wi th  the  use o f  the  Zuse "yields" sign, then  the  machine-sensible  indexed 
form of the  problem will be  obtained: 

(5.9) ( K  = 2, .", N ;  i = 1, ..., h ) .  

The course of the  extremization  calculation  ( init ial  column  and extremiza- 
tion  sequence) i s  shown i n   t h e  flow  chart  (Fig.&).  [In  the f l o w  chart,  the 
contents of the  trapezoids above  a given box  have the meaning of an execution 
instruction. For example, k = 2(1)N means: Execute the  contents of the  box 
continuously  for a l l  k of k = 2, with  an  interval of 1 t o  k = N.] 

The calculations f o r  this problem  were  performed on the Siemens 2002 dig- 
i t a l  computer of the DFL with  an ALGOL (algorithmic  language) program. The  com- 
putation time until  establishment of optimal  programing f o r  6 = 1/100 and N = 3 
was about 9 min. 
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In v i e w  of the  discret izat ion,  it i s  obvious t h a t  a cer ta in   error  must be 
tolerated.  For a* = 1/100, t h i s   e r r o r  - consti tuting  the  deviation  of  the 
product of the  calculated TI from the  prescribed  value a* - was between 10 and 
15% while, f o r  a* = 1/10, it was between 2 and 5%. The poss ib i l i t i es   for   re -  
ducing t h i s  excessive and impermissible  error will be  discussed la ter  i n   t h e  
text. 

, 
d ) Third Ekample /18 

The d i f f i c u l t i e s  produced by  discret izat ion are even more pronounced i n  
problems of the  calculus of variations.  In  the  simplest  case,  the problem 

formulation in   the   ca lcu lus  of vari- 
ations  reads as follows: 

The in tegra l  

i s  t o   b e  minimized by  suitable se- 
lec t ion  of a continuous  function 
Y W  

x X+d X ,  
.. 

Disregarding a t  first the   l e f t -  
hand boundaq  value P(xp; y p  ), one 

se l ec t s  an in i t i a l   va lue  y a t  an   a rb i t ra ry   po in t  x of the   in te rva l  <xp, XQ > 
(again  arbi t rary)  and then  seeks  the  extrema1  via  the  right-hand boundary value 
Q. Since x and y a re   a rb i t ra ry ,  a f i e l d  of extremals with a f ie ld   funct ion 
described  by 

6 

i s  obtained. To obtain  an argument permitting  an  analytic  description and a 
computational  treatment, it is  necessary to   consider  a second point x + A .  
Based on the   Be rnou l l i -Ner  concept t ha t  a randomly selected segment of the ex- 
tremals must also have extrema1 propert ies ,   the   f ie ld   funct ion F(x, y )  can be 
expressed as follows: /19 

This Bellman  argument  can be   c t i l i zed  i n  two d i f f e ren t  manners: 



If the  boundary  transition A - 0 is  performed  analytically,  the  following 
well-known  relations of the  calculus of variations  are  obtained  after a few 
transformations : 

the  Euler  differential  equation;  the  Weierstrass  and  Legendre  condi- 
tions ; 
the Erdmann corner  condition;  and  the  transversatility  condition. 

For  the  computational  treatment,  we  must be content  with  the  selection of 
a finite A. If, at  given A, the  number  of  stages N is  chosen  such  that  the  ab- 
scissa  distance  from  the  zero  stage  to  the  first  stage  is  not  smaller  than A but 
smaller  than 2A and if, again,  the  variation  interval 6 is  introduced,  and  using 
the  argument 

State : 

Decision: 

then  we  obtain  the  discretized  and  indexed  instructions 

The  course  of  the  computation  corresponds  to  that of the  above  problem. 

We computed a number of point-point  respectively  boundary-point  problems 
with ALGOL programs  on  the  Siemens 2002 computer. 

Fi re 5 shows  the  extrema1  field y = y(x, Q) of  the  "brachistochrone 
problem P 

I.3j.y) 

in the  search  zone 8.4 9 y S 15.9, with  the  abscissa  interval of A = 1 and  the 
variation  interval  of 6 = 0.3. The  integrations  were  carried  out  with  the 
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trapezoidal method. The computation time was ll+ min. T h i s  extremal f ie ld   d i s -  
t i n c t l y  proves tha t ,  from each  point on the  left-hand boundary, a unique  path 
l e a d s   t o   t h e  end point Q. 

Figure 6 shows three extremals of the  same Droblem but  calculated  with 

I 
k 

c ). 

- a  

k -7 

F"' 
differ ing  A and 6. The exact extremals 
are given as solid  lines,  while  the  cal- 
culated  points are indicated  by  circles 
which, f o r   t h e  extremals Nos.2 and 3 ,  
are interconnected  by  broken  lines. The 
extremal No.2 i s  identical   with  the ex- 
tremals shown as heavy l ines i n  Fig.5. 

The difference  in   absolute  amount 
(exact y-value minus calculated  y-value) 
i n   t hese  examples i s  always smaller 
than one var ia t ion  interval  6 .  The 
r a t i o  o f  the  calculating times agrees 
well  with  the  above-indicated rule of 
thumb. It is  obvious tha t   t he  improve- 
ment i n  accuracy r e s u l t s   i n  a consider- 
able   increase  in   calculat ing time. 

e )  Integration Method 

In   the   var ia t iona l  problems  considered  here,  the  following  integration 
methods were invest igated  for   calculat ing  the  integrals   over   the segments  of the 
f i e l d s  : 

Trapezoidal Method : /21 

Here, v = Ay/@x. 

Simpson  Method: 

Linear Exact Integration: 
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E E 

A A 

This method,  however, can be  applied  only to   func t ions   tha t  can be  exactly  inte- 
grated  by means of the linear argument 

O f  these  three methods, the  trapezoidal method generally  requires  the least  
computational e f for t   bu t  i s  frequently  too  inaccurate. 

In the  var ia t ional  problem 

t9 j  1 )  

(5.23) 

whose exact  solution i s  shown i n   t h e  accompanying sketch,  the  trapezoidal E 

k k-7 

method fails  completely.  This i s  
clearly  indicated when studying  the 
k-th stage. Not only  the  exact  solu- 
t i on   bu t   a l so  a l l  s t r a igh t   l i nes   t ha t  
intersect   the   exact   solut ion a t  the  in- 
terval   center  cause the   i n t eg ra l   t o  be- 
come zero in   t h i s   s t age .  

In   the   var ia t iona l  problem 

Conversely, the Simpson  method 
yielded  satisfactory results i n  this 
example even when A and S were so 
selected  that  - on the  one  hand - y 
never  exactly assumed the  value 3 and 
- on the  other hand - Ay/k never ex- 
a c t l y  assumed the  value -1. 

which  has no solution a t  the  prescribed boundary points,   the  trapezoidal method 
did  yield a solution,  but  an  erroneous one. 

In  the  classical  brachistochrone problem 
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which, i n  1696, furnished  the  incentive for development of the  calculus of vari- 
a t ions ,   the  Simpson  method fa i ls  as soon as P and Q come t o  l i e  on the  abscissa. 
The trapezoidal method produces  inaccurate  solution w h i l e  t he  method of linear 
exact   integrat ion  yields  a satisfactory  solution. The inaccurate  solution, /23 
when using  the  trapezoidal method, i s  dependent  mainly on the  integrat ion re- 
sults i n   t h e  first and last  stage.  In  these two s tages ,   the   in tegra l   resu l t s  
of  the  trapezoidal method d i f f e r  from those  obtained by l inear  exact  integra- 
t ion,  by a factor  of m. 

The Gaussian integrat ion method was not  investigated a t  first since, be- 
cause of the  calculation  with  decimals  instead of with  proper  fractions,  the 
great  advantages of  t h i s  method are canceled. 

The question as t o   t h e  most sui table   integrat ion method for a given  case 
cannot be answered i n  a general manner. Decisions must be made from case  to  
case. 

f ) Miscellaneous Notes 

In addi t ion   to   se lec t ing  an integrat ion method adapted t o   t h e  problem or, 
more generally, making a logical  selection  of  the computation method for   the  
functional, it i s  of importance to   ca lcu la te  a l l  functional components depending 
only on the  s tage k i n   t h e  k-cycle and a l l  functional components depending  only 
on the  state i, in  the  i-cycle.   In  our examples, t h i s  led t o  a time factor  up 
t o  1/50. 

Another  important  point i s  the  choice  of  the  ratio 6 / A .  Fully  calculated 
examples show tha t ,  a t  fixed 6 ,  t he   r e su l t  T and the  path  y(x)  will worsen a t  
decreasing A.  The r a t i o  should  not  be  greater  than 1/10 so as t o  permit a f ine  
gradation  of y’. A reduction i n   t h e   r a t i o   t o  less than 1/100, conversely,  leads 
t o  l i t t l e  gain and generally i s  of no advantage  because of the  excessive compu- 
ta t iona l   e f for t .  

A dec is ive   po in t   in  dynamic  prograrmning is  a logical  delimitation of t he  
search zone. The selection,  respectively  the  reduction,  of  the  search zone 
must take  place  only af ter  careful  physical. and mathematical  considerations. 
This   a lso  offers   the  possibi l i ty  of  considerably  improving  the  results of the  
rocket-staging problem. However, i f  the  limits are drawn too narrow, erroneous 
results may occur.  Figure 7 shows three  types of errors,  i n  cases i n  which the  
lower limit of  the  search zone was selected  too narrow: 

(Em)  = the  calculated extremal runs along  the  lower limit; 
(osc)  = the  calculated  extremal  oscillates  along  the  lower limit; 
( r e l )  = the  calculated extrema1 assumes a r e l a t ive  minimum in  the  zone. 
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These three types of extremal f a l s i f i ca t ion  were demonstrated  by  exces- /21 
sively narrowing  the  search zones f o r   t h e  problem shown in Fig.8. 

Especially  in  the  case of ( r e l )  i s  it possible   that   the   calculat ion  leads 
t o  a completely  erroneous result, despite  considerable  refining  of 6. 

Finally, we should  mention a physically  meaningless  but  computationally  in- 
te res t ing   var ia t iona l  problem,  which was solved  by  the method of dynamic pro- 
granrming, with  satisfactory  accuracy (see fig.8). 

The solution  of  the problem 

P 

can be  given  in  a closed form  whenever the  extremal can be  piecewise con.tinu- 
ously composed of  straight-line segments with a slope  of -1 in   t he   x -d i r ec t ion  
and of segments  of the  sine curve.  This  holds  for  the extremal No.1. 

The above-mentioned diminution of the  search zone was appl ied  to   three ex- 
amples. Too narrow a selection  of  the limits for   the  search zone l e d   t o   t h e  
mentioned extremal fa l s i f ica t ions .  

Finally, it should  be  noted  that  the  optimization method  "dynamic  program- 
ming" has  been  successfully  used i n  numerous problems since it i s  more  compre- 
hensive  than  the  other hown optimization methods. On the  other hand, i t s  
limits are clearly  defined;  they are produced primarily  by  the  large memory re- 
quirement and the  excessive  calculating time. 
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Fig.1 Multistage  Decision Process. 

M a s s e s   o n   c g n ~ t i o n  hfasses  on  burnout 
o f  t h e   s t a g e s  of t h e   s t a g e s  

P a y l o a d  

N- t h  s t a g e  

e 
e 
0 

S e c o n d   s t a g e  

Fig.2 .Multistage Rocket. 
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k=N k=N-1 k k-1 k = 2  k - 1  k = O  

N - t h   s t a g e  k -  t h   s t a R e   F i r s t   s t a g e  

E x t r e m i z a t t o n   s e q u e n c e  
1 -  I n i t i a l  
I column 

Fig.3 Graphic  Representation of an Optimization Plan. 

/ i - l ( l ) h  \ 

I n l t i a l   c o l u m n  
I f i r s t   s t a g e  

E x t r e m r z a t r o n  
= s e c o n d   t o  N -  t h   s t a g e  

Fig. 4 Flow Chart: Mremization Sequence. 
21 



I Y  

15. 

12 - 

9 -. 

6-  

3 .  

15 
15 - 

10 - 
10 -. 

10 - 

5 -  
5 -. 
5 .  

0 -  
0 -  
0 -  

3 6 9 12  15  18  21  24 A 

Fig. 5 Ectremal Field. 

N o .  d - - - 6 - T Calculating t a m e  

1 0.6 0.075 1.79249*.*  254 min 

2 1 0.3 1.7957 1.- 14 m i n  

3 1 0.5 1.60433**.  5 m L n 45 s e c 

T,,,ci=ln 6 - 1.79175- 

Fig.6 Extrema1 Calculation  with  Various  Intervals. 

22 



Fig." Extrema1  Falsifications. 

T - Min 1 (y'+ 1l2 (y-sinx)*dx 
(Y) 

Fig.8 Three Extremals. 
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